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Sample Size Determination for Grouped Exponential Observations:
A Cost Function Approach

KUNG-JONG Lui
DUANE SmiFY

Department of Mathematical Sciences, College of Sciences,
San Diego State University

JAMIE K. PUGH
Naval Ocean Systems Center, San Diego

Summary

Calculating the required sample size for a desired power at a given type I error level, we often
assume that we know the exact time of all subject responses whenever they occur during our study
period. It is very common, however, in practice that we only monitor subjects periodically and,
therefore, we know only whether responses occur or not during an interval. This paper includes a
quantitative discussion of the effect resulting from data grouping or interval censoring on the
required sample size when we have two treatment groups. Furthermore, with the goal of exploring
the optimum in the number of subjects, the number of examinations per subject for test responses,
and the total length of a study time period, this paper also provides a general guideline about how
to determine these to minimize the total cost of a study for a desired power at a given a-leveL
A specified linear cost function that incorporates the costs of obtaining subjects, periodic
examinations for test responses of subjects, and the total length of a study period, is assumed,
primarily for illustrative purpose.

Key words: Interval censoring; Linear cost function; Maximum likelihood
estimator; Sample size determination; Hazard rate.

1. Introduction

Calculating the sample size required to achi- a desired power at a fixed level
of significance, we usually assume that w, ,w the exact time of all subject
responses that occur before the end of our ,,udy period (GROSS and CLARK,

1975; NARULA and LI, 1975; RASCH, 1977; EPSTEIN and SOBEL, 1953; GEORGE
and DEsu, 1974). It is very common, however, in practice that we only monitor
subjects periodically and, therefore, we know only whether these subject
responses have occurred during a given interval (KULLDORFF, 1961; CHENG and
CHEN, 1988). We call this type of data grouped data, in which the information
on the exact time of responses is unavailable. For example, when we want to
study an asymptomatic chronic disease, continuous examinatibn of all subjects
in order to pinpoint the exact response time will often be practically difficult.
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With regard to the optimal design of reliability tests, numerous researches
have studied the properties of maximum likelihood estimators (MLEs) for
grouped data under different model assumptions. KULLDORFF (1961) syste-
matically laid down the fundamental theory for grouped data in exponential
distribLtions. CHENG and CHEN (1988) discussed the conditions for the existence
of the maximum likelihood estimator (MLE) and proposed an alternative
estimator to the MLE under the Weibull model for grouped data. Furthermore,
for a fixed number of examinations per subject, KULLDORFF (1961), NELSON
(1977), WEE and BAU (1987), and WEI and SHAu (1987) also discussed for a
variety of distributions the optimal interval length between any two consecutive
examinations within the same subject in order to minimize the asymptotic
variance of the MLE. None of these papers, however, addressed the optimal
sample size determination when the number of subjects, the number of
examinations per subject, and the length of a study period are permitted to
vary simultaneously with the goal of minimizing the total costs incurred in
conducting a study with a desired power I - f# at the a-level of significance.

In this paper, we irst present the required number of subjects based on
grouped exponential observations for a variety of parameter values in the
situation where we have two treatment groups. This provides a quantitative
assessment of the grouping effect on required sample sizes that are usually
calculated with the assumption that the subject response times are known
exactly. To generalize previous discussions on the optimality for grouped data
(KULLDORFF, 1961; NELSON, 1977; WEE and BAU, 1987; WEi and SHAU, 1987),
we consider a linear cost function that incorporates the costs of obtaining
subjects, periodic examinations for test responses, and the per unit cost of
maintaining the time period of a study. For a given power and a size
requirement, we determine the required number of study subjects, the number

_.........-_- ___, __. of periodic examinations per subject, and the length of the study time period
that minimize the total cost of a study.

2. Theory

Suppose that we have a completely randomized and balanced study that is
designed to compare two treatment groups, of which each has n experimental
subjects. Suppose also that the subject response times in the standard treatment
and the experimental treatment groups are exponentially distributed with hazard
rates A, and A2 , respectively. Because the standard treatment is replaced only
when A, > A2, we focus our discussion on testing the null hypothesis H.: A I = A2
versus the alternative hypothesis H.: At> A2. Furthermore, we assume that
subject withdrawal may occur in both treatment groups with withdrawal rates
y, and Y2, respectively. To determine the response time for a7 given subject, we
take K examinations that are equally spaced over the entire study period To.
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Let 4 denote this common length in time between any two consecutive
examinations; i.e., A4 simply equals ToIK. Note that for a fixed study period To,

if K were equal to oo, A would equal 0. This corresponds to the situation in
which we have no interval censoring in our data. Note also that the loss in the
relative efficiency of using equidistant examination rather than the optimal
grouping is generally not much. This is particularly true when the true values
of Ai, on which the optimal grouping strategy depends, are unknown and are
thus required to be guessed, and when the number of examinations K is so large
that Ai1To/K<0.8 (KULLDORFF, 1961). Therefore, we will focus the following
discussion on the equidistant case only.

Under the above assumptions, for a given subject j, where j = 1, 2,..., n, in
treatment group i (i = 1, 2), the probability that the response time R,, falls in the
interval ((k1o- I)A, k.,A), where ko = I, 2,..., K, equals

P(Rij E ((ko- I)A, k1 A))=exp(-,(k 14)). (1)

Similarly, for the subject j, the probability that withdrawal time W0 falls in the
interval ((kij-- 1),4, k11A) equals

P(Wij e ((k.,- 1),4, k,`4))= exp(- yi(kj- 1)4) (I - exp (- yi4)). (2)

Therefore, the general likelihood L, for n subjects in group i (i = 1, 2) can be
written as

Li= [A [exp(-A.(kij-1),4) (1 -exp(- 21 4)) exp(-y1 (k1j-1)4)]61
j=1

[exp(-yi(kij- 1)4) (1 -exp(-V ,4)) exp(-Ai(k11- !)4)]'?i

S............. ... [exp(-Q(.1+vy)KA)]-'i' (3)

where

l if subject j in group i responded before withdrawal and the end

6 of our study period To,

o0, otherwise,

and

1 if subject j in group i withdrew before response and the end
of our study period To,

0, otherwise.
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On the basis the above likelihood (3), we can obtain the MLE of ,j by solving
the following equation:

alogL, = b , + 6* [kij - 1] A + b, A exp(-A• A)

-[KA,5 ( [- l],j+- I S) [ 0. (4)

This leads the MLE of Ai to be

A.=I log I1+" J (5
iog + •j([(ij+b5j)(k,-j-l)+ K(I-bj-6*)]" (5)

-O°logL . --2 exp(--A),1
Furthermore, because = ' eXp( -A andbecause

A.
E I.) + 7i ( x i+YT1

the asymptotic variance of log (l.) is

Var (log(I.)) = V(oi, yi, To, K), (6)
n

where

V(Ai, y,, To, K) A' [I-exp(--(A1t+y,)To)]
• • •- A-1••' (I - exp (-A;, Tog))

exp (- Ai T0 /K) (Ai T0/K) 2

Note that when y, =0 (i.e., there is no subject withdrawal), the MLE i and the
asymptotic variance in formulae (5) and (6) reduce to those derived by KULL-
DORFF (1961) and NELSON (1977). Note also that for a fixed ratio AiTo, between
the study period and the mean response times, variance formula (6) is an in-
creasing function of the loss rate yv and is a decreasing function of the number K
of examinations per subject. Furthermore, if K increased to 00,

j ~~(I - exp(-Ai•To/K))2

exp(-A To/K) (A, To/K) 2

would decrease to 1. Therefore, the variance formula (6) will reduce to the same
as that when we know the exact response times that occur before To.
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Consider testing the null hypothesis Ho: A,=,2 versus the alternative
hypothesis H.: AlI/A2 = R > I with a desired power 1 - Pi at a-level. In developing
"sample size formulae, as frequently assumed elsewhere (TAuLBE and SYmoNS,
1983; GROss, HUNG, CANTOR, and CLARK, 1987), we rely on the asymptotic
normality of the MLE. On the the basis of the above formula (6), for a fixed
study period To and for a given number K of examinations per subject, the
required number of subjects, n, is then given by the smallest integer larger than

(Z, V/V([, y,, To, K)+ V(0, Y2, TO, K) + Z0 VV(,I, 7', To, K)+ V(A 1/R, Y2, To, K)) 2  (7)
(log(R))2

where A= A, (I+I/R)/2, and where Z. and Zg are the upper 100ath and 100lth
percentiles of a standard normal distribution, respectively.

Let C, and C2 denote the costs per subject and per examination, respectively.
Furthermore, let C3 denote the cost per unit time during our study period To.
Therefore, the total cost for a treatment group in the study under consideration
here is given by 2C, x n +2C 2 x n x K + C 3 x To. To detect the treatment effect
R =A.I/A2 > 1 at a,-level with a desired power 1- P, we want to find n, K and To
that minimize the above linear cost function subject to the following constraints:
that (i) n and K are integers, and (ii)

Z. /V(Gy, , To, K) + V(2, y2, To, K) - log(R) V/= Z,. (8)
/V(A.,, y, To, K) + V(,L1 R, 72, To, K)

We apply the IMSL subroutine DNCONF to obtain these optimal solutions as
follows: We employ a sequential procedure in which we first solve the
optimization problem for minimizing the above linear cost function subject to
the constraint (8), bu* without imposing the integer constraints. Then, the value
of K is fixed, in turn, at the greatest integer smaller than unconstrained value,

0 i 0.9t.- 4 . and the smallest integer greater than the unconstrained value. The subsequent
two-dimensional problem (involving n and TO) is solved, again without con-
straining n to be integer-valued. The value for n is then fixed at the smallest
integer larger than its unconstrained value, and the value of To is found by
solving the subsequent one-dimensional problem. This procedure is repeated
with the roles of K and n reversed. Of the resulting four sets of values for
(K, n, TO), the set with the smallest cost is selected as our final optimal solution.

3. Results

To study the possible loss of efficiency resulting from grouping, we summarize
the required sample sizes for the power of 0.90 at 0.05 level calculated by using
sample size formula (7). Tables I and 2 present the results for the hazard rate A,
in the standard treatment group ranging from 0.015 to 0.030, the fixed time
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study period To ranging from 50 to 400, the treatment effect R, ranging from
"2 to 4, the number of observations K per subject ranging from I to infinity, and
for the common loss rate y equal to 0.0 and 0.01. For example, when the loss
rate y,=0.00, the hazard rate .11 =0.015, the study period To=50, and R from
2 to 4 (Table 1), taking one or two observations per subject is almost as efficient
as taking infinitely many observations per subject (i.e., knowing the exact time
of test response), as evidenced by the fact that the required sample size is
virtually constant over all values of K. This is true for the same configuration
as above with the loss rate equal to 0.01 (Table 2). By contrast, when the hazard
rate is A = 0.030 and the study period increases to 400, the loss of efficiency
due to grouping is substantial and can remain as large as 20 to 30% (Tables 1
and 2), even when taking as many as 5 examinations per subject.

Table I

Required sample sizes for the iower of 0.90 at 0.05 level (one-sided test) based on grouped
exponential observations with hazard rate in the standard treatment group, 1, ranging
from 0.015 to 0.030, the fixed time study period To, ranging from 50 to 400, the treatment
effect R (=--,/A2), ranging from 2 to 4, and the number of examinations per subject, K,

ranging from I to oo at the loss rate, y, equal to 0.00 per unit of time.

A, TO R K=l 2 3 4 5 10 00

0.015 50 2 89 87 87 87 87 87 87
3 41 41 41 41 41 41 41
4 29 29 29 29 29 29 29

100 2 61 56 56 55 55 55 55
3 27 25 25 25 25 25 25
4 19 18. 18 17 17 17 17

-" . -_.. , _.•j 1. 200 2 63 46 43 42 42 41 41
3 25 19 .19 18 18 IS 18
4 16 13 13 12 12 12 12

400 2 190 57 45 41 39 37 37
3 65 22 18 17 16 16 15
4 39 14 12 11 11 10 10

0.025 50 2 66 62 62 61 61 61 61
3 30 28 28 28 28 28 28
4 21 20 20 20 20 20 20

100 2 58 47 45 44 44 44 44
3 24 20 20 19 19 19 19
4 16 14 13 13 13 13 13

200 2 119 50 43 40 39 38 37
3 43 20 18 17 16 16 16
4 26 13 11 11 11 II 10

400 2 2194 116 62 49 44 38 36
3 693 41 23 19 17 Is 15
4 396 25 14 12 II 10 10
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7' (Continuation) Table I

', TO R 1=C 2 3 4 5 10 00

0.030 50 2 61 56 56 55 55 55 55
3 27 25 25 25 25 25 25
4 19 18 18 17 17 17 17

100 2 63 46 43 42 42 41 41

3 25 19 19 18 18 18 18
4 16 13 13 12 12 12 12

200 2 190 57 45 41 39 37 37
3 65 22 18 17 16 16 16
4 39 14 12 11 I1 10 10

400 2 9227 188 77 56 48 39 36
3 2888 64 28 21 19 16 Is
4 1651 38 17 13 12 10 10

Table 2

Required sample sizes for the power of 0.90 and 0.05 level (one-sided test) Based on
grouped exponential observations with hazard rate, A,, in the standard treatment group
ranging from 0.015 to 0.030, the fixed time study period To, ranging from 50 to 400, the
treatment effect R (=A,/A 2 ), ranging from 2 to 4, and the number of examinations per
subject, K, ranging from I to oo at the loss rate, y, equal to 0.01 per unit of time.

TO R K= 1 2 3 4 5 10 00

0.015 50 2 I1 108 108 108 108 108 108
3 51 51 51 51 51 51 51
4 36 36 36 36 36 36 36

100 2 88 82 81 80 80 80 80
3 39 37 37 37 37 37 37
4 27 26 26 26 26 26 26

200 2 107 79 74 73 72 71 71
3 44 34 33 32 32 32 32

4 29 23 23 22 22 22 22

400 2 344 105 84 77 74 71 70
3 121 43 36 34 33 31 31
4 73 28 24 23 22 21 21

0.025 50 2 80 76 75 75 75 75 75
3 36 35 35 35 34 34 34

4 25 24 24 24 24 24 24
100 2 80 65 62 61 61 60 60

3 34 28 27 27 27 27 27
4 22 19 19 19 19 18 18

200 2 176 76 64 61 59 57 56
3 64 31 27 26 26 25 25
4 40 20 I8 18 17 17 17

400 2 3201 176 94 75 68 59 56
3 1019 64 37 31 28 25 24
4 584 39 24 20 19 17 16
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(Continuation) Table 2

•, TO R K=1 2 3 4 5 10 00

0.030 50 2 74 69 68 67 67 67 67
3 33 31 31 31 31 30 30
4 23 22 21 21 21 21 21

100 2 84 62 58 57 56 56 55
3 34 27 25 25 25 25 24
4 22 18 17 17 17 17 17

200 2 267 81 64 59 57 54 53
3 93 32 27 25 24 23 23
4 56 21 18 17 16 16 15

400 2 12675 266 II 81 69 57 53
3 3981 93 42 32 28 24 23
4 2279 56 26 21 19 16 15

Table 3
Optimal results about length of study period, To, sample sizes of subjects, n, and the
number of examinations per subject, K, for the power of 0.90 at 0.05 Level (one-sided test)
based on grouped exponential observations with hazard rate, A, in the standard treatment
group ranging from 0.015 to 0.030, and the treatment effect R (=A, /A2 ). ranging from 2
to 4 at the loss rate, y, equal to 0.00.

4/C 2  0 2 10

CI/C2 Al R T n K T n K T R K

1.0 0.015 2 129.7 57 1 72.5 70 1 35.7 114 1

3 135.6 24 1 .53.2 39 1 25.2 72 1
4 136.0 16 1 47.3 30 1 21.2 60 1

0.025 2 77.8 57 1 52.1 64 I 27.2 95 I
3 81.3 24 1 40.6 33 1 19.4 58 I
4 81.6 16 1 36.0 25 1 16.3 48 1

0.030 2 64.9 57 1 46.8 62 1 24.8 89 1
3 67.8 24 I 37.3 31 1 17.6 54 1
4 68.0 16, 1 31.7 24 I 15.0 44 I

5.0 0.015 2 174.7 46 2 102.5 60 1 59.2 79 1
3 197.0 19 2 83.7 29 1 42.9 46 1
4 176.5 13 2 77.3 21 1 36.7 37 I

0.025 2 104.8 46 2 69.7 58 1 43.5 70 I
3 118.2 19 2 62.8 26 1 31.9 39 1
4 105.9 13 2 54.7 19 1 28.4 30 1

0.030 2 87.4 46 2 58.1 58 I 39.4 67 I
3 98.5 19 2 52.3 26 1 29.8 36 1

4 88.3 13 2 50.5 18 1 25.8 28 1
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(Continuation) Table 3

C3/C 2  0 2 10

CI/C2 Al R T n K T n K T R K
10.0 0.015 2 220.2 42 3 145.9 48 2 76.5 68 1

3 285.4 17 3 104.7 26 1 57.2 37

4 302.4 11 3 91.2 19 1 49.4 29 1
0.025 2 132. 42 3 94.6 47 2 54.0 63 1

3 171.2 17 3 85.0 21 2 42.6 32 1
4 181.4 11 3 68.5 17 1 36.0 25 1

0.030 2 110.1 42 3 87.4 46 2 46.8 62 1
3 142.7 17 3 80.9 20 2 37.3 31 1
4 151.2 11 3 73.1 14 2 33.7 23 1

20.0 0.015 2 262.3 40 4 191.8 43 3 107.5 54 2
3 285.4 17 3 141.7 21 2 74.7 31 1
4 302.4 11 3 146.2 14 2 63.5 24 1

0.025 2 157.4 40 4 132-1 42 3 77.5 50 2
3 171.2 17 3 121.6 18 3 59.8 25 2
4 181.4 11 3 87.7 14 2 50.1 20 i

0.030 2 131.1 40 4 110.1 42 3 68.4 49 2
3 142.7 17 3 101.3 18 3 53.6 24 2
4 151.2 11 3 88.3 13 2 46.4 18 2

Table 4
Optimal results about length of study period, To, sample sizes of subjects, n, and the
number of examinations per subject, K, for the power of 0.90 at 0.05 level (one-sided test)
based on grouped exponential observations with hazard rate, A, in the standard treatment
group ranging from 0.015 to 0.030, and the treatment effect R (=A./A&2). ranging from 2
to 4 at the mean loss rate, y, equal to 0.01 per unit of time.

4/C2  0 2 ,0

C,/C 2  Al R T n K T M K T i K
1,,, ... . ... 3.0 0.015 2 97.9 88 1 68.1 961 34.9 136 1

3 99.7 39 1 51.7 50 1 24.8 82 1
4 123.0 26 1 45.5 38 1 21.4 66 1

0.025 2 61.5 76 1 49.7 80 1 26.9 108 I
3 65.8 33 1 39.3 40 1 19.2 64 1
4 73.1 22 1 34.7 30 1 16.3 52 1

0.030 2 59.3 72 I 43.9 76 1 24.2 101 1
3 62.6 31 1 36.1 37 1 17.5 59 1
4 61.6 21 1 31.1 28 1 15.1 47 i

5.0 0.015 2 97.9 88 I 90.3 89 1 56.1 104 1
3 99.7 39 1 75.8 42 1 41.5 57 1
4 123.0 26 1 71.0 30 1 36.4 44 1

0.025 2 102.1 64 2 61.5 76 1 42.2 85 I
3 95.4 28 2 58.2 34 1 31.9 45 1
4 73.1 22 1 53.9 24 1 27.4 35 1

0.030 2 82.4 61 2 52.1 73 1 37.9 80 1
3 62.6 31 1 47.4 33 1 28.6 42 1
4 61.6 21 1 45.6 23 1 25.2 32 1
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(Continuation) Table 4

C3/C2  0 2 10

C,/C 2  Al R T n K T n K T n K

10.0 0.015 2 141.6 77 2 123.9 78 2 70.2 95 1
3 147.6 34 2 88.7 40 1 53.7 49 1
4 166.9 23 2 85.1 28 I 47.5 37 1

0.025 2 102-1 64 2 84.7 65 2 49.7 80 1

3 95.4 28 2 79.6 29 2 41.3 39 1
4 95.5 19 2 60.8 23 I 36.7 29 I

0.030 2 82.4 61 2 71.3 62 2 43.9 76 i
3 73.7 27 2 63.8 28 2 36. 1 37 I
4 80.1 18 2 65.4 19 2 33.0 27 1

20.0 0.015 2 141.6 77 2 123.9 78 2 92.3 83 2
3 147.6 34 2 121.3 35 2 67.3 44 I
4 166.9 23 2 124.1 24 2 61.8 32 I

0.025 2 108.4 61 3 108.4 61 3 72.1 67 2
3 95.4 28 2 79.6 29 2 54.6 33 2
4 110.5 18 3 77.4 20 2 45.0 26 I

0.030 2 89.7 58 3 89.7 58 3 61.1 64 2
3 95.8 25 3 73.7 27 2 52.3 30 2
4 129.4 16 4 80.1 18 2 41.4 24 I

We next address the problem of minimizing total study cost subject to integer
constraints on n and K and the inference constraint (8) for a given power of 0.90
at 0.05 level of significance. Tables 3 and 4 summarize the results by giving the
study periods, To, the required number of subjects, n, and the number of
examinations per subject, K, for the subject/examination unit cost ratio, C1/C 2,
ranging from I to 20, the time/examinatiort unit cost ratio, C3/C2 , ranging from
0 to 10, the basic hazard rate, A,, ranging from 0.015 to 0.030, the treatment

>,rt -lr ..-i, ~ effect, R, ranging from 2 to 4, and loss rates' y, equal to 0.00 and 0.01. For
example, when C/C 2 =10, C 3 /C 2 = 2.0, A I= 0.030, and R =3, the optimal
study period To, the required number of subjects, n, and the number of
examinations K per subject are 80.9, 20, and 2 (Table 3). In this situation but
for the loss rate y =0.01 (Table 4), these optimal solutions for To, n, and K
become 63.8, 28, and 2, respectively.

4. Discussion

If we know the exact times of the test responses (or equivalently, the number of
examinations, K, per subject is infinite), then since

Var (log (ýJ) = , '[I -exp(-(Ai + y,)To)]

ft +Y
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is a decreasing function of the study time period To, the required sample size
always decreases as To increases (Tables 1 and 2). This is not true, however, for
grouped data. In fact, for a fixed number of observations k per subject, increasing
the length of study period T. alone can conversely lead to requiring a larger
sample size of subjects (Tables I and 2). This increase can be substantial,
especially when the ratio of the length of study period to the mean response
time A To is large and K is small. Therefore, when we have grouped data and
when the underlying test responses have a short mean lifetime, we should
consider increasing the number of observations, K, per subject before increasing
the study period to improve the precision of the MLE. On the other hand, if
,i To or To is small (Tables I and 2), the required number of subjects for K =-2
is essentially equal to that for K = oo.

From both Tables 3 and 4, the optimal number of examinations, K, increases
with an increase of the relative costs CI/C2 . This is consistent with our intuition,
because if the cost of obtaining a subject were relatively larger than that of
obtaining an examination, it would be certainly wise to increase the number of
examinations per subject in order to reduce the required number of subjects to
reach a desired power. The optimal number of examinations, K, however,
decreases with an increase of C3/C2 . This can be interpreted as a result that
when the cost of per unit study period is relatively high, it may be more
economical to increase -the number of subjects and reduce the study period To.
Therefore, in this situation in which To is small, as noted before, taking one or
two examinations is as efficient as taking infinitely many (K = cx) examinations.
In other words, increasing the number of examinations per subject, K, does not
significantly reduce the asymptotic variance. Note also that even when the
relative cost C1/C 2 is as large as 20, the optimal number of examinations per
subject, K, is not bigger than 4 (Tables 3 and 4). This suggests that, in practice,
we may seldom need to take more than 4 observations per subject.

- -•--f-.'r7Ju-•-••.•:rj; . When the loss rate I is greater than 0, there is nonzero probability that a
given subject will drop out before the end of our study and this probability will
increase with the length of the study period. Therefore, comparing the results in
Table 3 (y = 0) with those in Table 4 (y = 0.01), we will increase the required
number of subjects rather than increase the length of the study period in order
to compensate for the missing information resulting from those drop-out
subjects. In fact, we can see that the optimal length of our study periods, To in
Table 4, generally are shorter than the corresponding ones in Table 3 and so are
the optimal number of examinations per subject.

In summary, in this paper, we have derived a general sample size formula for
the required number of subjects for grouped exponential data. We have
quantitatively studied the grouping effect directly on the required sample sizes
of subjects in a variety of situations. We also have included a discussion on the
optimal sample allocation and the optimal length of the study period under a
linear cost function.



"688 KU'NG-JoNG LUi et al.: Grouped Exponential Data

Acknowledgement

The authors wish to thank Dr. Thomas Bonifield of the U.S. Public Health
Service for his encouragement. This work was supported by Navy Computer
Telecommunications Station, Funding Document No. N6316591 WR60001.

References

CHENG, K. F. and CHEN, C. H., 1988: Estimation of the Weibull parameters with grouped data.
Comm. Statist. Theor. Meth. 17, 325-341.

EPSTEIN, B. and SoBEL, M., 1953: Life testing. J. Amer. Statist. Assoc. 48, 486-502.
GEORGE, S. L. and DEsu, M. M., 1974: Planning the size and duration of a clinical trial studying the

time to some critical event. J. Chronic Diseases 27, 15-24.
GRoss, A. J. and CLARK, V. A., 1975: Survival Distributions: Reliability Applications in the Biomedical

Sciences. Wiley, New York.
GRoss, A. J., HUNG, H. H., CANTOR, A. B., and C.ARK, B. C., 1987: Sample size determination in

clinical trials with an emphasis on exponentially distributed responses. Biometrics 43, 875-883.
KULLDORFF, G., 1961: Estimation from Grouped and Partially Grouped Samples. Wiley, New York.
NARULA, S. C. and Li, F. S., 1975: Sample size calculations in e..ponential life testing. Techno-

metrics 17, 229-231.
NELSON, W., 1977: Optimum demonstration tests with grouped inspection data from an exponential

distribution. IEEE Transactions on Reliability 26, 226-231.
RAsct, D., 1977: Sample size determination of estimating the parameter of an exponential

distribution. Biom. J. 19, 521-528.
TAULBEE, J. D. and SyloNs, M. J., 1983: Sample size and duration for cohort studies of survival time

with covariables. Biometrics 39, 351-360.
WE!, D. and BAU, J. J., 1987: Some optimal designs for grouped data in reliability demonstration

tests. IEEE Transactions on Reliability 36, 600-604.
WEt, D. and SitAu, C. K., 1987: Fitting and optimal grouping on Gamma reliability data. IEEE

Transactions on Reliability 36, 595-599.

Received June 1992

.,•-1L .... i:. - .11 ~Dr. K.-J. Lui
Department of Mathematical Sciences

College of Sciences
San Diego State University
San Diego, CA 92182-0314
U.S.A.

• •iia


